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Abstract—The syntheses of new 3,3-dinitro derivatives of the 1,5-diazocine ring system are described. Highly deactivated precursor
ketones hexahydro-7,7-dinitro-1,5-bis(2- and 4-nitrobenzenesulfonyl)-1,5-diazocin-3(2H)-ones (18) have been difluoraminated to
the corresponding gem-bis(difluoramino)diazocines (19). The 1,5-bis(4-nitrobenzenesulfonyl)diazocine derivative undergoes N-
nitrolysis with the protonitronium reagent formed in the nitric acid–trifluoromethanesulfonic acid–antimony pentafluoride system
to produce 3,3-bis(difluoramino)octahydro-1,5,7,7-tetranitro-1,5-diazocine 2 (TNFX), containing nitramine, gem-dinitro, and
gem-bis(difluoramino) structural components. © 2001 Elsevier Science Ltd. All rights reserved.

As first proposed by Zheng et al.1 and by Baum and
co-workers,2 gem-bis(difluoramino)-substituted hetero-
cyclic nitramines, such as structures 1 and 2, are of
interest because of their potentially high density, high
energy, and superior properties as solid propellant oxi-
dizers.3 A superior synthesis of compound 1 (HNFX)
was recently reported,4,5 and, in this communication,
we report the first synthesis of a gem-dinitro-substituted
analog, 2 (TNFX). Although the symmetric analogs,
HNFX and octahydro-1,3,3,5,7,7-hexanitro-1,5-diazo-
cine,6 have been reported, the asymmetric derivative 2,
incorporating both difluoramino and C-nitro sub-
stituents in addition to nitramine, may offer potentially
superior propellant performance in certain formula-
tions, based either on arguments involving qualitative
chemical features of the ingredient2 or on computa-
tional estimates of its thermodynamic properties.7 Of
course, the asymmetric functionalization of the C3 and
C7 carbons of the 1,5-diazocine system required devel-
opment of a judicious protection strategy, as we
describe here.

The introduction of two geminal difluoramino groups
generally requires strongly acidic conditions (e.g. anhy-
drous H2SO4) starting from precursor ketones or cer-
tain gem-bromonitro intermediates.8 This severe
synthetic constraint limits the types of functional
groups that will survive this treatment. In this report,
we detail two approaches affording important new
gem-dinitro-1,5-diazocine derivatives that have been
successfully developed as difluoramination precursors
to 2.

With a view toward subsequent hydrolysis of the O-
acetyl group to the alcohol followed by oxidation to the
corresponding ketone, several unsuccessful attempts to
prepare the analogous gem-dinitro compound from
oxime 3 were carried out. Oxime 3, available from
on-going related studies, was made by ozonolysis of
3-acetoxy-1,5-diacetyloctahydro-7-methylene-1,5-diazo-
cine9 followed by oximation of the intermediate ketone.
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As outlined in Scheme 1, the conventional oxidation
methods10 for the conversion of oximes to the gem-dini-
tro group that were investigated included �100%
HNO3, N-bromosuccinimide and m-chloroperbenzoic
acid. In each case transannular bridging intervened and
only the 3,7-diacetyl-5-nitro-9-oxa-3,7-diazabicyclo-
[3.3.1]nonane derivative 4 was obtained.

In the first approach (Scheme 2), ketone 5, the precur-
sor to oxime 3, was subjected to the sequence of
transformations shown, to arrive at oxime 8. 1,3-Dioxo-
lane protection of the keto function in the latter oxime
was employed to avoid transannular reactions and,
under these conditions, smooth conversion of the oxime
8 to the corresponding gem-dinitro compound 9 took
place. However, under a variety of conditions, depro-
tection of 9 to the corresponding ketone proved impos-
sible in our hands.

In the alternative strategy, outlined in Scheme 3, a
commercially available starting material, 1,3-
diaminopropan-2-ol (10),12 was N-protected by o-
nitrobenzenesulfonyl or p-nitrobenzenesulfonyl groups,
followed by chromic acid oxidation to ketone 12, and
the latter carbonyl function was protected through
reaction with ethylene glycol to form its 1,3-dioxolane
derivative 13. Cycloalkylation of 13 with methallyl
dibromide13 followed by ozonolysis of the readily
formed exo-methylene-1,5-diazocine intermediate 14
afforded the monoprotected 1,5-diazocin-3(2H)-one 15.
Oximation followed by HNO3 oxidation of 16 afforded
the gem-dinitro derivative 17, and hydrolysis of the
latter produced the desired hexahydro-7,7-dinitro-1,5-
diazocin-3(2H)-one derivative 18.

As shown in Scheme 4, the gem-bis(difluoramino)
derivative 19 was obtained by a modified
difluoramination4 of ketone 18 with difluoramine–

Scheme 1. Reagents and conditions (yield): (a) HNO3,
NH4NO3, urea, CH2Cl2, reflux (29%); (b) NBS, NaHCO3,
dioxane–H2O, rt (40%); (c) m-CPBA, Na2HPO4, urea,
MeCN, reflux (49%).

These findings substantiate previously observed
difficulties in this eight-membered ring system.2b,11 The
marked propensity for transannular bridging to occur
leads to stable 9-oxa-3,7-diazabicyclo[3.3.1]nonanes.4,11c

Thus, satisfactory methodologies that circumvent
bridging are needed for the preparation of asymmetric
saturated gem-dinitro-1,5-diazocine precursors that will
undergo difluoramination reactions.

Scheme 2. Reagents and conditions (yield): (d) ethylene glycol, p-TsOH, benzene (69%); (e) K2CO3, MeOH–H2O, rt (86%); (f)
Jones reagent, 0°C (69%); (g) NH2OH·HCl, NaOAc, MeOH, reflux (97%); (h) HNO3, NH4NO3, urea (36%).

Scheme 3. Reagents and conditions: (i) 2- or 4-nitrobenzenesulfonyl chloride, THF–H2O, K2CO3, rt; (j) CrO3, H2SO4, acetone,
rt; (k) ethylene glycol, p-TsOH, toluene; (l) CH2�C(CH2Br)2, K2CO3, acetone, reflux; (m) (1) O3, CH2Cl2, −78°C, (2) Me2S; (n)
NH2OH·HCl, NaOAc, EtOH, reflux; (o) HNO3, NH4NO3, urea; (p) conc. H2SO4, rt.
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Scheme 4. Reagents and conditions: (q) HNF2–F2NSO3H–
H2SO4–CFCl3, −15°C; (r) HNO3–CF3SO3H–SbF5, rt.
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difluorosulfamic acid in sulfuric acid. N-Nitrolysis of
dinosyldiazocine 19 proved remarkably difficult. This
could be anticipated for reasons elaborated in the previ-
ous report on the synthesis of HNFX by N-nitrolysis of
a dinosyldiazocine precursor.5 Sterically hindered and
electronegatively substituted protected amines are espe-
cially resistant to N-nitrolysis, and diazocine 19 incorpo-
rates both of these features. A b,b-bis(difluoramino)alkyl
plus a b,b-dinitroalkyl substituent impart even more
electron-withdrawing character than the two bis(difluor-
amino)alkyl substituents of the HNFX precursor; for
example, Taft’s s*(NO2)=4.7214 versus s*(NF2):
4.13.15 Thus, even extended nitrolysis (14 days) of 19 with
the system nitric acid–trifluoromethanesulfonic acid, a
source of the strongly nitrating species protonitronium
(NO2H2+),16 at elevated temperature (55°C) produced
predominantly only the corresponding mononitramine.
Only by addition of a strong Lewis acid, SbF5, to the
nitrating system—in order to generate a higher concen-
tration of protonitronium17—followed by further nitrol-
ysis (2 days) was 2 (TNFX) formed by a clean conversion
as the major product, although thus far in an
unquantified yield. Therefore, the second nitrolysis step
of Scheme 4 may well be the most difficult N-nitrolysis
ever successfully achieved, since the second nitrolysis step
producing HNFX was complete in HNO3–HOTf (with-
out Lewis acid) in only �40 h.5 Also, only the p-nosyl
isomer of 19 was useful for formation of TNFX because
the o-nosyl derivative underwent para-C-nitration, and
the resulting 2,4-dinitrobenzenesulfonyl derivative was
not effectively nitrolyzed. The product (2) was identified
by multinuclear NMR spectroscopy as well as X-ray
crystallography. CAUTION: TNFX (2) is expected to be
a relatively sensitive high explosive and should be pre-
pared and handled only by qualified personnel!

In summary, the first successful synthesis of 3,3-bis(difl-
uoramino)octahydro-1,5,7,7-tetranitro-1,5-diazocine 2
(TNFX) has been realized. All compounds and interme-
diates described here have been fully characterized (1H,
13C NMR, HRMS, and/or X-ray crystallography), and
a complete report of the synthetic details and interesting
crystallographic properties of TNFX will be published
elsewhere.
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